Showing posts with label atomic. Show all posts
Showing posts with label atomic. Show all posts

Tuesday, November 8, 2016

A diver made a remarkable discovery in Canada. Royal Navy started an immediate investigation

Royal Canadian Navy started investigations to examine a mysterious object discovered by a diver, object that could be, in fact, a nuclear bmblost in the early days of the Cold War.

Sean Smyrichinsky made this discovery when he was near Banks Island, area close to the location where a US bomber crashed in 1950 after Mark IV bomb was lost on 14 November.

Smyrichinsky said: "I swam to the boat a little further and found an object t . I have never seen : Oh God, I discovered a UFO!" When he documented on the origin of this object came into contact with an image of Mark IV bomb and realized that is very similar to the found object.


Photo of Mark IV bomb. Source: Wikimedia Commons

In a book published this year, Dirk Septer told the story of the bombs missed. "Near midnight on February 13, 1950, three engines bomber of the US Air Force B-36 Intercontinental caught fire when they were above the coast of northwestern Canada. The team on board was dropped, and the aircraft crashed somewhere in the Pacific Ocean. Four years later, his remains were discovered by accident in a location at a distance from the one that crashed, three hours of flying in the opposite direction of the aircraft, coastal mountains of Colombia. After years was not told anything, the US has admitted finally that they lost one of nukes. "In terms of team members, 5 of them died and 12 survived.

Source: Daily Mail


Wednesday, August 10, 2016

Do Black Holes have a back door?

Credit: NASA/CXC/M.Weiss
One of the biggest problems when studying black holes is that the laws of physics as we know them cease to apply in their deepest regions. Large quantities of matter and energy concentrate in an infinitely small space, the gravitational singularity, where space-time curves towards infinity and all matter is destroyed. Or is it? A recent study by researchers at the Institute of of Corpuscular Physics (IFIC, CSIC-UV) in Valencia suggests that matter might in fact survive its foray into these space objects and come out the other side.

Published in the journal Classical and Quantum Gravity, the Valencian physicists propose considering the singularity as if it were an imperfection in the geometric structure of space-time. And by doing so they resolve the problem of the infinite, space-deforming gravitational pull.

Credit: NASA/CXC/M.Weiss

"Black holes are a theoretical laboratory for trying out new ideas about gravity," says Gonzalo Olmo, a Ramón y Cajal grant researcher at the Universitat de València (University of Valencia, UV). Alongside Diego Rubiera, from the University of Lisbon, and Antonio Sánchez, PhD student also at the UV, Olmo's research sees him analysing black holes using theories besides general relativity (GR).

Specifically, in this work he has applied geometric structures similar to those of a crystal or graphene layer, not typically used to describe black holes, since these geometries better match what happens inside a black hole: "Just as crystals have imperfections in their microscopic structure, the central region of a black hole can be interpreted as an anomaly in space-time, which requires new geometric elements in order to be able to describe them more precisely. We explored all possible options, taking inspiration from facts observed in nature."

Using these new geometries, the researchers obtained a description of black holes whereby the centre point becomes a very small spherical surface. This surface is interpreted as the existence of a wormhole within the black hole. "Our theory naturally resolves several problems in the interpretation of electrically-charged black holes," Olmo explains. "In the first instance we resolve the problem of the singularity, since there is a door at the centre of the black hole, the wormhole, through which space and time can continue."

This study is based on one of the simplest known types of black hole, rotationless and electrically-charged. The wormhole predicted by the equations is smaller than an atomic nucleus, but gets bigger the bigger the charge stored in the black hole. So, a hypothetical traveller entering a black hole of this kind would be stretched to the extreme, or "spaghettified," and would be able to enter the wormhole. Upon exiting they would be compacted back to their normal size.

Seen from outside, these forces of stretching and compaction would seem infinite, but the traveller himself, living it first-hand, would experience only extremely intense, and not infinite, forces. It is unlikely that the star of Interstellar would survive a journey like this, but the model proposed by IFIC researchers posits that matter would not be lost inside the singularity, but rather would be expelled out the other side through the wormhole at its centre to another region of the universe.

Another problem that this interpretation resolves, according to Olmo, is the need to use exotic energy sources to generate wormholes. In Einstein's theory of gravity, these "doors" only appear in the presence of matter with unusual properties (a negative energy pressure or density), something which has never been observed. "In our theory, the wormhole appears out of ordinary matter and energy, such as an electric field" (Olmo).

Credit: NASA/CXC/M.Weiss

The interest in wormholes for theoretical physics goes beyond generating tunnels or doors in spacetime to connect two points in the Universe. They would also help explain phenomena such as quantum entanglement or the nature of elementary particles. Thanks to this new interpretation, the existence of these objects could be closer to science than fiction.


Other articles on the same theme:





Story Source:
The above post is reprinted from materials provided by sciencedaily . Note: Materials may be edited for content and length.

Saturday, July 23, 2016

World-first pinpointing of atoms at work for quantum computers






























An STM image showing the atomic level detail of the electron wave function of a sub-surface phosphorus dopant. Through highly precise matching with theoretical calculations the exact lattice site position and depth of the dopant can be determined.
Credit: University of Melbourne

Scientists can now identify the exact location of a single atom in a silicon crystal, a discovery that is key for greater accuracy in tomorrow's silicon based quantum computers.

It's now possible to track and see individual phosphorus atoms in a silicon crystal allowing confirmation of quantum computing capability, but which also has use in nano detection devices.


Quantum computing has the potential for enormous processing power in the future. Current laptops have transistors that use a binary code, an on-or-off state (bits). But tomorrow's quantum computers will use quantum bits 'qubits', which have multiple states.







Professor Lloyd Hollenberg at the University of Melbourne and Deputy Director of the Centre for Quantum Computation and Communication Technology led an international investigation on the fundamental building blocks of silicon based solid-state quantum processors.

His collaborators Professor Sven Rogge and Centre Director Professor Michelle Simmons at the University of New South Wales, obtained atomic-resolution images from a scanning tunneling microscope (STM) allowing the team to precisely pinpoint the location of atoms in the silicon crystal lattice.

'The atomic microscope images are remarkable and sensitive enough to show the tendrils of an electron wave function protruding from the silicon surface. 

Lead author of the paper recently published in Nature Nanotechnology, Dr Muhammad Usman from the University of Melbourne said: 'The images showed a dazzling array of symmetries that seemed to defy explanation, but when the quantum state environment is taken into account, suddenly the images made perfect sense.'

The teams from University of Melbourne, UNSW and Purdue University USA are part of the research at the Centre focused on the demonstration of the fundamental building blocks of a silicon-based solid-state quantum processor.


Other articles on the same theme:








The above post is reprinted from materials provided by sciencedaily . Note: Materials may be edited for content and length.