Showing posts with label quantum mechanics. Show all posts
Showing posts with label quantum mechanics. Show all posts

Friday, December 7, 2018

US researchers succeeded in creating elementary particles using quantum computers with 512 qubits

Quantum computing has long dangled the possibility of superfast, super-efficient processing, and now search giant Google has jumped on board that future. popsci.com 



US researchers  succeeded in creating elementary particles using quantum computers with 512 qubits quantum bit. They estimate that 10 are needed at the power of 500 qubits or 1, e + 500 qubits to simulate the entire universe with all its fundamental particles. Each atom is composed of electrons, protons and neutrons, and each of these particles consists of 1 (electron) or 3 quartz

In quantum computing, a qubit or quantum bit (sometimes qbit) is the basic unit of quantum information—the quantum version of the classical binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the weirdness of quantum mechanics. Examples include: the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization. In a classical system, a bit would have to be in one state or the other. However, quantum mechanics allows the qubit to be in a coherent superposition of both states/levels at the same time, a property that is fundamental to quantum mechanics and thus quantum computing.

Autodesk qubits-explained


Each quark consists of 6 fundamental particles with different spin In particle physics, an elementary particle or fundamental particle is a subatomic particle with no substructure, thus not composed of other particles. Particles currently thought to be elementary include the fundamental fermions (quarks, leptons, antiquarks, and antileptons), which generally are "matter particles" and "antimatter particles", as well as the fundamental bosons (gauge bosons and the Higgs boson), which generally are "force particles" that mediate interactions among fermions. A particle containing two or more elementary particles is a composite particle.

Everyday matter is composed of atoms, once presumed to be matter's elementary particles—atom meaning "unable to cut" in Greek—although the atom's existence remained controversial until about 1910, as some leading physicists regarded molecules as mathematical illusions, and matter as ultimately composed of energy. Soon, subatomic constituents of the atom were identified. As the 1930s opened, the electron and the proton had been observed[citation needed], along with the photon, the particle of electromagnetic radiation. At that time, the recent advent of quantum mechanics was radically altering the conception of particles, as a single particle could seemingly span a field as would a wave, a paradox still eluding satisfactory explanation

The energy behind them is the same, only the mathematical equations that are those smells and spins are different

Therefore, this universal simulation is made up of immense energy and intense computational effort

Scientists simulate the Universe's birth (Credit: Patrick Landmann/Science Photo Library)


They believe that most of the characters in the local universe containing 7 trillions of galaxies, of which 250 billion stars, the rest being in the nebula;

Each galaxy is composed of a central black hole and between 100 and 1,000 billion stars
each star has between 10 and 100 planets

Each planet can have hundreds of natural satellites (Jupiter in our solar system as a gas giant)
and on every planet or satellite that meets the conditions can live billions of intelligent beings and trillions of beings in total

tecreview.tec


Well most of the characters are simulated they do not have the spirit of being outside the universe
however, the purpose of this gigantic simulation is historical, the purpose being to find out how the universe would evolve if some key characters would have done other things in life
that is, if a political leader like myself would live in poverty, he would not join a political party and would not become a president ...

The voice in the brain tells me that I have accomplished 93% of what I had to do until now, although only 20% of my real life has been respected it's actually pretty boring to follow your life's schedule as it's already just you know what you've done or suspect.


Other articles on the same theme:





Monday, March 6, 2017

Another step into the future: A new kind of magnet recently discovered, Will revolutionize today's technology

This is a spectrum of the three layer graphene as a function of magnetic field and density of electrons. Credit: Biswajit Datta, Mandar Deshmukh
Scientists have discovered the magnetism of electrons in three layers of graphene. This study reveals a new kind of magnet and provides insight on how electronic devices using graphene could be made for fundamental studies as well as various applications.

Metals have a large density of electrons and to be able to see the wave nature of electrons one has to make metallic wires that are only a few atoms wide. However, in graphene -- one atom thick graphite -- the density of electrons is much smaller and can be changed by making a transistor. As a result of the low density of electrons the wave nature of electrons, as described by quantum mechanics, is easier to observe in graphene.

Graphene is an atomic-scale hexagonal lattice made of carbon atoms. Credit: wikipedia

Often in metals like copper the electron is scattered every 100 nanometers, a distance roughly 1000 times smaller than the diameter of human hair, due to impurities and imperfections. Electrons can travel much longer in graphene, up to distances of 10 micrometer, a distance roughly 10 times smaller than the diameter of human hair. This is realized by sandwiching graphene between layers of boron nitride. The layers of boron nitride have few imperfections to impede the flow of electrons in graphene.

Once electrons travel long distances, implying there are few imperfections, one notices the faint whispers of electrons "talking to each other." Reducing the imperfections is akin to making a room quiet to enable the faint whispers of electronic interactions to develop between many electrons.

Graphene becomes superconductive Credit: Science Daily


In a study, led by PhD student Biswajit Datta, Professor Mandar Deshmukh's group at TIFR realized just this kind of silence allowing electronic interactions to be observed in three layers of graphene. The study reveals a new kind of magnet and provides insight on how electronic devices using graphene could be made for fundamental studies as well as applications. This work discovers the magnetism of electrons in three layers of graphene at a low temperature of -272 Celsius. The magnetism of electrons arises from the coordinated "whispers" between many electrons.

Other articles on the same theme:







Story source: 
 
The above post is reprinted from materials provided by Sciencedaily . Note: Materials may be edited for content and length.

Thursday, July 14, 2016

A new theory on the Creation of the Universe, effects of quantum mechanics disprove the Big Bang




An international team of researchers has backed up the growing hypothesis that the Big Bang was actually a 'Big Bounce', meaning that the Universe didn’t pop into existence. Instead, it simply started expanding again after contracting fully.

If correct, the team’s findings might explain how the Universe transitioned from contraction to expansion, a debate that has been raging over the Big Bounce hypothesis since it was first introduced nearly 100 years ago.

Before we get into the new findings, let's take a quick overview of what the Big Bounce is. Put simply, it’s a hypothesis that was created to explain how the Universe formed.

Unlike the Big Bang model, though, which states that our Universe was born out of nothing but a gigantic explosion from an infinitely dense point, the Big Bounce proposes that the Universe is constantly expanding and contracting.




























This means that the Universe operates sort of like a balloon, where it expands from a single point, grows and grows until it reaches some maximum distance, and then contracts back to the original point, starting the whole process over again.

Until now, one of the biggest road blocks to this hypothetical model was how the Universe would transition from contraction to expansion when it is fully ‘deflated’. The new study hopes to solve that using the properties of quantum mechanics.




According to the team – consisting of physicists from the UK and Canada – when the Universe is at its smallest point, it is ruled by quantum mechanics instead of the normal physics of the everyday world around us.

At this extremely small scale, the Universe would be saved from destruction because the effects of quantum mechanics would, in essence, keep everything together

"Quantum mechanics saves us when things break down," explains team member Steffen Gielen, from Imperial College London.

"It saves electrons from falling in and destroying atoms, so maybe it could also save the early Universe from such violent beginnings and endings as the Big Bang and Big Crunch." (Spoiler: The Big Curnch is how scientists predict our Universe might end, and it ain't pretty.



Quantum Mechanics: Concepts and Applications, 2nd Edition

To come to that conclusion, the team built a computer model that simulates how the Universe might have evolved over time.

When all was said and done, they found that using quantum mechanics, the Universe could have expanded from a single point even with the minimal amount of ingredients – radiation and a little matter – that were present at the time.

"The big surprise in our work is that we could describe the earliest moments of the hot Big Bang quantum mechanically, under very reasonable and minimal assumptions about the matter present in the Universe," said team member Neil Turk, from the Perimeter Institute for Theoretical Physics in Canada. "Under these assumptions, the Big Bang was a 'bounce', in which contraction reversed to expansion."



While the current model explains how the Universe might have transitioned between expansion and contraction, the team is now looking to see if it can eventually produce the objects inside the Universe, such as galaxies and other celestial structures.

This isn’t the first time a team of scientists have claimed that the Big Bang as we know it might have never happened.

Back in February, a team of researchers from Egypt created a model that stated that the Universe has no beginning or end. Instead, using quantum mechanics and Einstein's theory of general relativity, they suggested that the Universe has simply been going forever.

Hopefully, as computer models continue to get more powerful with each passing day, we will eventually have a better, more complete understanding of how our Universe formed - and one day might all disappear.


Other articles on the same theme:









The new study was published in the journal Physical Review Letters.